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Abstract
Ultra-discrete equations are generalized cellular automata in the sense that the
dependent (and independent) variables take only integer values. We present
a new method for identifying integrable ultra-discrete equations which is the
equivalent of the singularity confinement property for difference equations and
the Painlevé property for differential equations. Using this criterion, we find
integrable ultra-discrete equations which include the ultra-discrete Painlevé
equations.

PACS numbers: 05.45.−a, 02.90.+p

Integrable dynamical systems play universal roles as models of natural phenomena. They
are valuable models because they possess no chaos and their solutions allow prediction.
In continuous time, these systems include the famous soliton equations appearing in many
physical contexts [1], such as fluids, plasma physics and optics. Reductions of such equations
lead to the Painlevé equations, which appear in crucial roles in several exactly solvable
statistical-mechanics models [2] and in random matrix theory [3]. Their discrete versions,
which also appear in statistical mechanics, orthogonal-polynomial theory, several numerical
algorithms [4] and random matrix theory, have been a focus of intense interest in the past
15 years [5].

Cellular automata (CA) have been widely adopted in the sciences as simple but powerful
models of the real world because the complex patterns produced by their long-time behaviours
can mimic observations with tremendous accuracy [6]. However, the lack of mathematical
tools makes prediction difficult in CA models. That there are integrable, predictable CAs,
possessing solitons, was confirmed by the beautiful work of Tokihiro et al [7]. They
showed that integrable CA with soliton solutions may be obtained from well-known integrable
equations such as the Korteweg–de Vries (KdV) equation. The path they took was through
ultra-discrete equations. The aim of this letter is to present a new method of identifying
integrable ultra-discrete equations, and hence integrable CA.
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Figure 1. Curves joining iterates of equation (3) in the (Xn, Xn+1)-plane, with X0 = 0, X1 = 1
and K = 1, K = 2, K = 3.

Ultra-discrete equations are obtained by a limiting process from discrete equations in a
way that allows both the dependent and independent variables to take only discrete values.
The first integrable ultra-discrete equations called soliton cellular automata were obtained
by Takahashi et al [16, 17]. These are governed by filter parity rules and also related to
box and ball systems. A method to ultra-discretize integrable systems was developed in [7,
18] followed by the study of different ultra-discrete versions of known integrable equations
including the Painlevé equations [19–23]. One open problem was the lack of an algorithmic
method for finding new integrable ultra-discrete equations. Our paper addresses this problem.

The crucial step in the discovery of the Painlevé equations [8] was the test for the Painlevé
property, i.e., that all movable singularities of all solutions are poles. This Painlevé test has
been used [9] repeatedly to obtain necessary conditions for integrability. In the discrete setting,
there exist several tools to test an equation for integrability [10–15]. In particular, singularity
confinement [10, 11], like the Painlevé test for continuous systems, provides a way to identify
integrability through the study of the singularity of the solutions of a discrete system. In this
paper, we extend the test to ultra-discrete equations.

For each variable (or parameter) v in a given equation, the ultra-discretization method
requires that we introduce a new variable V defined by v = e

V
ε . Then we take the limit ε → 0+

of the equation using the identity

lim
ε→0+

ε log
(
e

A
ε + e

B
ε

) = max(A,B). (1)

Consider the discrete equation

xn+1xn−1 = k +
1

xn

, (2)

where k is constant. Under the ultra-discrete limit, this becomes

Xn+1 + Xn + Xn−1 = max(Xn + K, 0). (3)

For integer K, and initial values X0, X1, all iterates are integer. Equation (2) is part of the QRT
family [24] of integrable mappings and admits the following conserved quantity:

I = xn + xn−1 +
k

xn

+
k

xn−1
+

1

xnxn−1
. (4)

The corresponding conserved quantity for equation (3) is

I = max(Xn,Xn−1,K − Xn−1,K − Xn,−Xn − Xn−1). (5)

The phase-plot in figure 1 shows the qualitative nature of the invariant curves.
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Discrete Painlevé equations have been found by using the singularity confinement test
on non-autonomous versions of the QRT family. In the following, we show that our test is
capable of producing ultra-discrete Painlevé equations.

The only singularity in equation (2) is x = 0 and it can be shown that iterates that come
close to this singularity are confined in the sense that they are non-singular after a finite set
of steps and are analytic in the initial data. Moreover, other integrability criteria, namely,
conditions on the Nevanlinna order of the mapping and degree of growth of the mapping,
are satisfied. The very valuable insight developed in [10, 11] was to use this criterion on the
de-autonomized equation, where the constant coefficient k is replaced by a function of n:

xn+1xn−1 = φ(n) +
1

xn

.

By demanding singularity confinement, they found that the admissible equations in this class
are given by [25] φ(n) = kqn, where k and q are constants.

In order to analyse (3), we consider the value Xn = −K at which the right-hand side is
not differentiable and study the iterates. To do so, we perform a local analysis by perturbing
the point Xn = −K by the nonzero real small ε and consider the case when Xn−1 > 2|K|.
Then the iterates are

ε > 0 ε < 0

Xn −K + ε −K + ε

Xn+1 K − Xn−1 K − Xn−1 − ε

Xn+2 Xn−1 − ε Xn−1

Xn+3 Xn−1 Xn−1 + ε

Xn+4 K − Xn−1 + ε K − Xn−1

Xn+5 −K − ε −K − ε

Xn+6 Xn−1 Xn−1

From the table above one sees that Xn,Xn+1, Xn+2, Xn+3, Xn+4 are not differentiable at
Xn = −K since the coefficients of ε in the two different columns do not match. However, the
differentiability is recovered at the next two steps for Xn+5 and Xn+6 and we argue that this
behaviour characterizes integrability. A convincing argument in favour of our claim comes
from considering the non-autonomous version of (3)

Xn+1 + Xn + Xn−1 = max(Xn + φn, 0), (6)

where now φn is an arbitrary function of n. The iterates read

ε > 0 ε < 0

Xn −φn + ε −φn + ε

Xn+1 φn − Xn−1 φn − Xn−1 − ε

Xn+2 Xn−1 − ε Xn−1

Xn+3 Xn−1 − φn + φn+2 Xn−1 − φn + φn+2 + ε

Xn+4 φn+3 − Xn−1 + ε φn+3 − Xn−1

Xn+5 −φn+3 − φn+2 + φn − ε −φn+3 − φn+2 + φn − ε

(where it has been assumed that Xn−1 > max(φn + φn+1,−φn+2,−φn+3 − φn+2 + φn, φn+3 +
φn+4). As before, Xn+5 is differentiable but for Xn+6 to be differentiable, φn must satisfy the
equation

φn+5 − φn+3 − φn+2 + φn = 0, (7)



L502 Letter to the Editor

=2

=3

=1

Figure 2. Curves joining scaled iterates of equation (6), with φ(n) = βn, in the (Xn/n,

Xn+1/(n + 1))-plane, with X0 = 0, X1 = 1 and β = 1, β = 2, β = 3.

Figure 3. Figure showing the evolution of a singularity of (9) in the case σ = 1. The dots denote the
locations at which arbitrary boundary conditions have been imposed (except for ui+1

j = 1+ε which
induces non-differential iterates as ε → 0). The D and ND stand, respectively, for differentiable
and non-differentiable. The figure shows that the ND points are localized in the lattice and do not
propagate.

whose general solution is

φn = α + βn + γ (−1)n + δ cos

(
2πn

3

)
+ ω sin

(
2πn

3

)
, (8)

where α, β, γ and δ are arbitrary constants. No other conditions arise on φn from the remaining
initial conditions. The phase-plot in figure 2 shows the qualitative nature of the orbits, for
the case φ(n) = βn. For γ = δ = ω = 0, one obtains a well-known ultra-discrete version
of the first Painlevé equation (u-PI−2 in [20]). When γ is also nonzero, it corresponds to an
ultra-discrete version of a degenerate form of the scaled discrete asymmetric version of the
third Painlevé equation found in [11] (see equation (8) of this paper) which reads

yy = δ±
0 qn +

1

y
,
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where δ±
0 is a constant, the ± sign being dependent on the parity of n. Note that it is a

straightforward exercise to show that δ and ω can always be brought to zero by the gauge
transformation Xn = X̃n − ψn with ψn = (

δ cos
(

2πn
3

)
+ ω sin

(
2πn

3

))
.

Using the same idea on other integrable autonomous discrete equations that are part of
the QRT mappings, one can obtain all the known ultra-discretizations of Painlevé equations
together with other new ones. Our extensive study of these will be published elsewhere [26].

Furthermore, our criterion can be applied to lattice equations evolving with time. For
example, consider the equation

ui+1
j+1 = ui

j + max
(
ui+1

j − 1, 0
) − σ max

(
ui

j+1 − 1, 0
)
, (9)

where i is the discretization of time and j is the discretization of space and σ is a constant.
The case σ = 1 corresponds to an ultra-discretization of the KdV equation and it was shown
to admit N soliton solutions [7]. The equation admits a singularity if ui+1

j = 1. This
situation, in the case σ = 1, is illustrated in figure 3 where it is shown that the singularity
does not propagate in the two-dimensional plane for the class of initial conditions satisfying
ui

j −max
(
ui

j+1−1, 0
)

< 1 and ui+1
j−1−max

(
ui+2

j−1−1, 0
)

> max
(
1, ui+2

j−1−max
(
ui+3

j−1−1, 0
))

.
Note that other values of σ do not give rise to the pattern illustrated in figure 3. For example,
if σ �= 1, ui+2

j+2 and ui+3
j+1 are not differentiable and the singularity appears to propagate through

the plane. Our criterion is thus able to single out integrable equations in 1+1 dimensions.
Note finally that our analysis carries over to CA (in which the dependent variable is restricted
to take the values 0 or 1) such as that associated with (9) (equation (8) of [7]).
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Nonlinearity 13 889–905

[13] Roberts J A G and Vivaldi F 2003 Arithmetical method to detect integrability in maps Phys. Rev. Lett. 90 034102
[14] Conte R and Musette M 1996 A new method to test discrete Painlevé equations Phys. Lett. A 223 439–48
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